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Singlet fraction and its usefulness in Teleportation

• Singlet fraction:

• Teleportation fidelity:

• A mixed two-qubit entangled state useful for
teleportation if the singlet fraction is greater than
½.
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Results

• Proved that the optimal trace preserving protocol for
maximizing the singlet fraction of a given state
always belongs to a class of one-way communication
(1-LOCC).

• Shown that any entangled two-qubit mixed state can
be used as a resource for quantum teleportation
using certain trace preserving local operations and
classical communications.

F. Verstraete and H. Verschelde, Phys. Rev. Lett. 90, 097901 (2003)



• Convex optimization problem:
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Motivations

121. In the expression of optimal singlet fraction,  we have ,  which is an

unphysical operation and cannot be implemented in a lab.

BT


2. Singlet fraction is not normalized and thus for some entangled state, it 

may take value greater than unity.Important point is that the filter and hence

singlet fraction depends on the state under investigation.
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• A linear map                               is called positive if 
for all positive                  , the operator                     
is positive.  

• From the definition, it is clear that positive maps 
applied to density matrices give density matrices.

• Transposition map is an example of a positive 
map.

• Now the question arises that whether all positive 
maps applied to density matrices in the extended 
Hilbert space give density matrices?                                

Positive Map
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• Let be a positive map and let

denote an identity map. Then
we say that is completely positive if for all d,
the extended map is positive.

• Trace map is an example of a completely positive 
map.

• CP represent the most general transformations 
of quantum states. [K. Kraus, States, Effects, and Operations 

(SpringerVerlag, Berlin, 1983)].

Completely Positive Map (CP)
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• CP maps are capable to describe an arbitrary
quantum transmission channel. [B. Schumacher, Phys.

Rev. A 54, 2614 (1996)]

• Some unphysical transformations, such as
quantum cloners or universal-NOT gate
can be approximated optimally by an
optimal CP map. [J. Fiurasek, Phys. Rev. A 64, 062310

(2001)].

Why CP Map is important?



• Transposition map is a positive but not
completely positive map because it is not 2-
positive.

• Positive but not completely positive maps are
very useful to detect entangled states.

• A density matrix of a bipartite system is
inseparable iff there exists a positive map acting
on a subsystem such that the image of the
density matrix is not positive semidefinite. [M.

Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).]

Positive but not Completely Positive Map



• Particularly important is the partial transposition
map , whose ability to detect the
entanglement was first pointed out by Peres [A. Peres,

Phys. Rev. Lett. 77, 1413 (1996)].

• Since is not a CP map, it seems to be impossible
to implement this map physically in a lab.

• To overcome this difficulty, Horodecki and Ekert
suggested a way to approximate the unphysical map

such that it can be implemented in experiment. This
method is called Structural Physical Approximation.
[P. Horoecki and A. Ekert, Phys. Rev. Lett. 89, 127902-1(2002) ]
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Structural Physical Approximation (SPA)

• SPA is a transformation from positive maps to
completely positive maps.

• SPA has been exploited to approximate
unphysical operation such as partial transpose.

• The idea is to form a mixture of the positive map
P with a CP map O that transforms all quantum
states onto maximally mixed state.

• It can be used directly in experiment to detect
the entanglement directly without full
tomographic reconstruction of the bipartite state
whose entanglement is to be determined.



SPA to Partial Transposition
Any arbitrary two qubit density matrix is given by
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where (*) denotes the 
complex conjugate.

The structural physical approximation of partial transposition of 

12 is given by
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SPA to Partial Transposition

and T  : SPA to transpose operation and inversion operation.
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12Matrix form of  
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How does SPA works?

Let us consider a two qubit state described by the density matrix
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12Condition of entanglement in terms of eigenvalues of 

Let us consider the operator: 12 12
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If the state

12Condition of entanglement in terms of eigenvalues of 

12 is entangled and W detects it, then
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Horodecki and Ekert, Phys. Rev. Lett. 89, 127902 (2002)
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Properties of the operator
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P2.  For all separable state 12 ,S it can be easily shown that the
operator detect that the eigenvalue of 12 is greater

equal to 
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thus the hermitian operator has at least one negative 
eigenvalue.

P3.  The operator can be converted into a normalized operator   
by multiplying with a suitable constant 

Hence the above defined operator satisfies all the properties of 
a witness operator. This witness operator detect whether the 
eigenvalue of         is less than         or not? Equivalently, whether 
the state        is entangled or not?
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Let us consider the filter A of this form
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This is the required condition in terms of eigenvalues of , 

for  to be used as a resource state for quantum teleportation
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Example
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12Number of measurements needed to determine the eigenvalues of 
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C.J.Kwong et.al. also presented an experimental set up with single Hong-Ou-
Mandel interferometry in which only two detectors are applied to calculate the 
average fidelity, regardless of the dimensions of the Hilbert space of the state.
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